【大数据架构】日志采集方案对比

2024-01-09 21:46:46

整体架构

日志采集端

Flume

????????Flume的设计宗旨是向Hadoop集群批量导入基于事件的海量数据。系统中最核心的角色是agent,Flume采集系统就是由一个个agent所连接起来形成。每一个agent相当于一个数据传递员,内部有三个组件:

  • source: 采集源,用于跟数据源对接,以获取数据
  • sink:传送数据的目的地,用于往下一级agent或者最终存储系统传递数据
  • channel:agent内部的数据传输通道,用于从source传输数据到sink

Logstash

????????Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到存储库中。数据从源传输到存储库的过程中,Logstash 过滤器能够解析各个事件,识别已命名的字段以构建结构,并将它们转换成通用格式,以便更轻松、更快速地分析和实现商业价值。

????????Logstash是基于pipeline方式进行数据处理的,pipeline可以理解为数据处理流程的抽象。在一条pipeline数据经过上游数据源汇总到消息队列中,然后由多个工作线程进行数据的转换处理,最后输出到下游组件。一个logstash中可以包含多个pipeline。

  • Logstash管道有两个必需的元素,输入和输出,以及一个可选元素过滤器:
  • Input:数据输入组件,用于对接各种数据源,接入数据,支持解码器,允许对数据进行编码解码操作;必选组件;
  • output:数据输出组件,用于对接下游组件,发送处理后的数据,支持解码器,允许对数据进行编码解码操作;必选组件;
  • filter:数据过滤组件,负责对输入数据进行加工处理;可选组件;Logstash安装部署
  • pipeline:一条数据处理流程的逻辑抽象,类似于一条管道,数据从一端流入,经过处理后,从另一端流出;一个pipeline包括输入、过滤、输出3个部分,其中输入和输出部分是必选组件,过滤是可选组件;instance:一个Logstash实例,可以包含多条数据处理流程,即多个pipeline;
  • event:pipeline中的数据都是基于事件的,一个event可以看作是数据流中的一条数据或者一条消息;

Filebeat

????????Filebeat是一个日志文件托运工具,在服务器上安装客户端后,Filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停的读),并且转发这些信息到ElasticSearch或者Logstarsh中存放。

? ? ? 当你开启Filebeat程序的时候,它会启动一个或多个探测器(prospectors)去检测你指定的日志目录或文件,对于探测器找出的每一个日志文件,Filebeat启动收割进程(harvester),每一个收割进程读取一个日志文件的新内容,并发送这些新的日志数据到处理程序(spooler),处理程序会集合这些事件,最后filebeat会发送集合的数据到你指定的地点。

????????Filebeat由两个主要组成部分组成:prospector和 harvesters。这些组件一起工作来读取文件并将事件数据发送到指定的output。

  • Harvesters:负责读取单个文件的内容。harvesters逐行读取每个文件,并将内容发送到output中。每个文件都将启动一个harvesters。harvesters负责文件的打开和关闭,这意味着harvesters运行时,文件会保持打开状态。如果在收集过程中,即使删除了这个文件或者是对文件进行重命名,Filebeat依然会继续对这个文件进行读取,这时候将会一直占用着文件所对应的磁盘空间,直到Harvester关闭。默认情况下,Filebeat会一直保持文件的开启状态,直到超过配置的close_inactive参数,Filebeat才会把Harvester关闭。
  • Prospector:负责管理Harvsters,并且找到所有需要进行读取的数据源。如果input type配置的是log类型,Prospector将会去配置路径下查找所有能匹配上的文件,然后为每一个文件创建一个Harvster。每个Prospector都运行在自己的Go routine里。
  • Filebeat目前支持两种Prospector类型:log和stdin。每个Prospector类型可以在配置文件定义多个。log Prospector将会检查每一个文件是否需要启动Harvster,启动的Harvster是否还在运行,或者是该文件是否被忽略(可以通过配置 ignore_order,进行文件忽略)。如果是在Filebeat运行过程中新创建的文件,只要在Harvster关闭后,文件大小发生了变化,新文件才会被Prospector选择到。

Flume、Logstash、Filebeat对比

Flume和Logstash都是基于JVM,比较吃资源,跟LogServer部署在一起的话会有风险。

而Filebeat是基于Go语言开发,吃资源较少,非常稳定。

Flume更注重于数据的传输,对于数据的预处理不如Logstash。在传输上Flume比Logstash更可靠一些,因为数据会持久化在channel中。数据只有存储在sink端中,才会从channel中删除,这个过程是通过事物来控制的,保证了数据的可靠性。Logstash是ELK组件中的一个,一般都是同ELK其它组件一起使用,更注重于数据的预处理,Logstash有比Flume丰富的插件可选,所以在扩展功能上比Flume全面。但Logstash内部没有persist queue,所以在异常情况下会出现数据丢失的问题。Filebeat是一个轻量型日志采集工具,因为Filebeat是Elastic Stack的一部分,因此能够与ELK组件无缝协作。Filebeat占用的内存要比Logstash小很多。性能比较稳健,很少出现宕机。

流量削峰Kafka

为什么要使用 kafka?

  1. 缓冲和削峰:上游数据时有突发流量,下游可能扛不住,或者下游没有足够多的机器来保证冗余,kafka在中间可以起到一个缓冲的作用,把消息暂存在kafka中,下游服务就可以按照自己的节奏进行慢慢处理
  2. 解耦和扩展性:项目开始的时候,并不能确定具体需求。消息队列可以作为一个接口层,解耦重要的业务流程。只需要遵守约定,针对数据编程即可获取扩展能力。
  3. 冗余:可以采用一对多的方式,一个生产者发布消息,可以被多个订阅topic的服务消费到,供多个毫无关联的业务使用。
  4. 健壮性:消息队列可以堆积请求,所以消费端业务即使短时间死掉,也不会影响主要业务的正常进行。
  5. 异步通信:很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

下图是理想情况下的系统配置:

实际部署时需要通过ZooKeeper做高可用的保障,kafka到es中间可以通过logstash进行数据的清洗。

在这里插入图片描述

日志采集场景问题汇总

怎么确保日志文件不会重复采集?

怎么保证日志数据不会重复消费?

怎么监控日志的异常波动?

文章来源:https://blog.csdn.net/weixin_40035038/article/details/135488870
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。