【LeetCode每日一题合集】2023.12.11-2023.12.17 (?二维前缀和+二维差分 & 珂朵莉树)

2023-12-18 16:42:14

1631. 最小体力消耗路径?🐂

https://leetcode.cn/problems/path-with-minimum-effort/description/?envType=daily-question&envId=2023-12-11

在这里插入图片描述
提示:

rows == heights.length
columns == heights[i].length
1 <= rows, columns <= 100
1 <= heights[i][j] <= 10^6

解法1——二分查找

二分查找答案,每次用 BFS 检查是否合理。
时间复杂度是 m n l o g C mnlogC mnlogC

class Solution {
    int m, n;
    int[][] heights;
    int[] dx = {-1, 0, 1, 0}, dy = {0, -1, 0, 1};

    public int minimumEffortPath(int[][] heights) {
        m = heights.length;
        n = heights[0].length;
        this.heights = heights;

        int l = 0, r = 999999;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(mid)) r = mid;
            else l = mid + 1;
        }
        return l;
    }

    public boolean check (int mx) {
        Queue<int[]> q = new LinkedList<>();
        boolean[][] st = new boolean[m][n];
        st[0][0] = true;
        q.offer(new int[]{0, 0});
        while (!q.isEmpty()) {
            int[] cur = q.poll();
            int x = cur[0], y = cur[1];
            if (x == m - 1 && y == n - 1) return true;
            for (int k = 0; k < 4; ++k) {
                int nx = x + dx[k], ny = y + dy[k];
                if (nx >= 0 && nx < m && ny >= 0 && ny < n && !st[nx][ny] && Math.abs(heights[x][y] - heights[nx][ny]) <= mx) {
                    q.offer(new int[]{nx, ny});
                    st[nx][ny] = true;
                }
            }
        }
        return false;
    }
}

解法2——并查集

【算法基础:数据结构】2.3 并查集

把数据当作一个图,将所有边放入列表并从小到大排序,之后逐个枚举边,将两边的点放入并查集中,直到起点和终点位于同一个集合,此时的边就是答案。

class Solution {
    int[] p;

    public int minimumEffortPath(int[][] heights) {
        int m = heights.length, n = heights[0].length;
        List<int[]> edges = new ArrayList<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int id = i * n + j;
                if (i > 0) {
                    // 把这个点和上面的点这条边放进去
                    edges.add(new int[]{id - n, id, Math.abs(heights[i][j] - heights[i - 1][j])});
                }
                if (j > 0) {
                    // 把这个点和左面的点这条边放进去
                    edges.add(new int[]{id - 1, id, Math.abs(heights[i][j] - heights[i][j - 1])});
                }
            }
        }
        Collections.sort(edges, (x, y) -> {
            return x[2] - y[2];
        });

        p = new int[m * n];
        Arrays.setAll(p, e -> e);
        int ans = 0;
        // 从小到大枚举每个边
        for (int[] edge: edges) {
            int x = edge[0], y = edge[1], v = edge[2];
            p[find(x)] = find(y);
            if (find(0) == find(m * n - 1)) {		// 加入这个边之后,0和m*n-1联通了
                ans = v;
                break;
            }
        }
        return ans;
    }

    public int find(int x) {
        if (x != p[x]) p[x] = find(p[x]);
        return p[x];
    }
}

解法3——最短路 Dijkstra

【算法基础:搜索与图论】3.4 求最短路算法(Dijkstra&bellman-ford&spfa&Floyd)

使用堆优化的 Dijkstra 算法。

class Solution {
    int[] dx = {-1, 0, 1, 0}, dy = {0, -1, 0, 1};

    public int minimumEffortPath(int[][] heights) {
        int m = heights.length, n = heights[0].length;
        PriorityQueue<int[]> pq = new PriorityQueue<>((x, y) -> {
            return x[2] - y[2];
        });
        pq.offer(new int[]{0, 0, 0});
        int[][] dist = new int[m][n];
        for (int i = 0; i < m; ++i) Arrays.fill(dist[i], Integer.MAX_VALUE);
        dist[0][0] = 0;
        boolean[][] seen = new boolean[m][n];

        while (!pq.isEmpty()) {
            int[] edge = pq.poll();
            int x = edge[0], y = edge[1], d = edge[2];
            if (seen[x][y]) continue;
            if (x == m - 1 && y == n - 1) break;

            seen[x][y] = true;
            for (int i = 0; i < 4; ++i) {
                int nx = x + dx[i], ny = y + dy[i];
                if (nx >= 0 && nx < m && ny >= 0 && ny < n && Math.max(d, Math.abs(heights[nx][ny] - heights[x][y])) < dist[nx][ny]) {
                    dist[nx][ny] = Math.max(d, Math.abs(heights[nx][ny] - heights[x][y]));
                    pq.offer(new int[]{nx, ny, dist[nx][ny]});;
                }
            }
        }
        return dist[m - 1][n - 1];
    }
}

2454. 下一个更大元素 IV(双单调栈)

https://leetcode.cn/problems/next-greater-element-iv/?envType=daily-question&envId=2023-12-12

在这里插入图片描述

提示:

1 <= nums.length <= 10^5
0 <= nums[i] <= 10^9

解法1——双单调栈

一个单调栈处理第一个更大的数,另一个处理第二个更大的数字。

如何确保了 stk2 的单调性呢?因为先处理了 stk2,可以确保在 stk1 的数据推入 stk2 之前,stk2 中 <= nums[i] 的数据都被弹出了,即 stk2 中存留的数据一定 大于 从 stk1 推入 stk2 的数据。

class Solution {
    public int[] secondGreaterElement(int[] nums) {
        int n = nums.length;
        int[] ans = new int[n];
        Arrays.fill(ans, -1);
        // 两个单调递减的单调栈
        Deque<Integer> stk1 = new ArrayDeque<>(), stk2 = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            // 判断是否是第二个更大的数字
            while (!stk2.isEmpty() && nums[i] > nums[stk2.peek()]) {
                ans[stk2.pop()] = nums[i];
            }
            // 使用ls存下弹出的结果
            List<Integer> ls = new ArrayList<>();
            while (!stk1.isEmpty() && nums[i] > nums[stk1.peek()]) {
                ls.add(stk1.pop());
            }
            for (int j = ls.size() - 1; j >= 0; j--) stk2.push(ls.get(j));
            stk1.push(i);
        }
        return ans;
    }
}

解法2——单调栈+优先队列

用一个单调队列代替其中一个单调栈,时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)

class Solution {
    public int[] secondGreaterElement(int[] nums) {
        int n = nums.length;
        int[] ans = new int[n];
        Arrays.fill(ans, -1);
        // 两个单调递减的单调栈
        Deque<Integer> stk = new ArrayDeque<>();
        PriorityQueue<Integer> pq = new PriorityQueue<>((x, y) -> nums[x] - nums[y]);
        for (int i = 0; i < n; ++i) {
            // 判断是否是第二个更大的数字
            while (!pq.isEmpty() && nums[i] > nums[pq.peek()]) {
                ans[pq.poll()] = nums[i];
            }
            while (!stk.isEmpty() && nums[i] > nums[stk.peek()]) {
                pq.offer(stk.pop());
            }
            stk.push(i);
        }
        return ans;
    }
}

2697. 字典序最小回文串(贪心)

https://leetcode.cn/problems/lexicographically-smallest-palindrome/description/?envType=daily-question&envId=2023-12-13
在这里插入图片描述

提示:

1 <= s.length <= 1000
s 仅由小写英文字母组成

回文串的相对应位置,两两判断取较小者即可。

class Solution {
    public String makeSmallestPalindrome(String s) {
        int n = s.length();
        char[] chs = s.toCharArray();
        for (int l = 0, r = n - 1; l < r; ++l, --r) {
            if (chs[l] < chs[r]) chs[r] = chs[l];
            else chs[l] = chs[r];
        }
        return new String(chs);
    }
}

2132. 用邮票贴满网格图?????(二维前缀和+二维差分)

https://leetcode.cn/problems/stamping-the-grid/description/?envType=daily-question&envId=2023-12-14
在这里插入图片描述

提示:

m == grid.length
n == grid[r].length
1 <= m, n <= 10^5
1 <= m * n <= 2 * 10^5
grid[r][c] 要么是 0 ,要么是 1 。
1 <= stampHeight, stampWidth <= 10^5

用前缀和快速检查一片区域是否有占据位置;
用差分快速检查一个位置是否被覆盖。

class Solution {
    public boolean possibleToStamp(int[][] grid, int stampHeight, int stampWidth) {
        int m = grid.length, n = grid[0].length;
        int[][] sum = new int[m + 1][n + 1], diff = new int[m + 2][n + 2];
        // 计算占据位置的前缀和 
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                sum[i + 1][j + 1] = grid[i][j] + sum[i + 1][j] + sum[i][j + 1] - sum[i][j];
            }
        }
        // 依次检查每个位置是否可以作为左上角,计算差分数组
        for (int i = 0; i + stampHeight - 1 < m; ++i) {
            for (int j = 0; j + stampWidth - 1 < n; ++j) {
                int x = i + stampHeight, y = j + stampWidth;
                int s = sum[x][y] - sum[i][y] - sum[x][j] + sum[i][j];
                if (s == 0) {
                    diff[i + 1][j + 1]++;
                    diff[i + 1][y + 1]--;
                    diff[x + 1][j + 1]--;
                    diff[x + 1][y + 1]++;
                }
            }
        }
        // 还原差分数组
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                diff[i][j] += diff[i - 1][j] + diff[i][j - 1] - diff[i - 1][j - 1];
                if (diff[i][j] == 0 && grid[i - 1][j - 1] == 0) {
                    return false;
                }
            }
        }
        return true;
    }
}

关于 前缀和 和 差分 可见:【算法基础】1.5 前缀和与差分

力扣上有二维前缀和的模板题目:304. 二维区域和检索 - 矩阵不可变

2415. 反转二叉树的奇数层

https://leetcode.cn/problems/reverse-odd-levels-of-binary-tree/description/?envType=daily-question&envId=2023-12-15

在这里插入图片描述

提示:

树中的节点数目在范围 [1, 2^14] 内
0 <= Node.val <= 10^5
root 是一棵 完美 二叉树

解法1——BFS 交换值

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode reverseOddLevels(TreeNode root) {
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        boolean f = true;
        while (!q.isEmpty()) {
            int sz = q.size();
            List<TreeNode> ls = new ArrayList<>();
            for (int i = 0; i < sz; ++i) {
                TreeNode cur = q.poll();
                if (f && cur.left != null) {
                    ls.add(cur.left);
                    ls.add(cur.right);
                }
                if (cur.left != null) q.offer(cur.left);
                if (cur.right != null) q.offer(cur.right);
            }
            if (f) {
                for (int l = 0, r = ls.size() - 1; l < r; l++, r--) {
                    int t = ls.get(l).val;
                    ls.get(l).val = ls.get(r).val;
                    ls.get(r).val = t;
                }
            }
            f = !f;
        }
        return root;
    }
}

解法2——镜像DFS 🐂

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode reverseOddLevels(TreeNode root) {
        dfs(root.left, root.right, 1);
        return root;
    }

    public void dfs(TreeNode a, TreeNode b, int d) {
        if (a == null) return;
        if (d % 2 == 1) swap(a, b);
        dfs(a.left, b.right, d + 1);
        dfs(a.right, b.left, d + 1);
    }

    public void swap(TreeNode a, TreeNode b) {
        int t = a.val;
        a.val = b.val;
        b.val = t;
    }
}

2276. 统计区间中的整数数目(平衡二叉搜索树/珂朵莉树)?????

https://leetcode.cn/problems/count-integers-in-intervals/description/?envType=daily-question&envId=2023-12-16

在这里插入图片描述

提示:

1 <= left <= right <= 10^9
最多调用 add 和 count 方法 总计 10^5 次
调用 count 方法至少一次

珂朵莉树是一种以近乎暴力的形式存储区间信息的一个数据结构。方式是通过set存放若干个用结构体表示的区间,每个区间的元素都是相同的。
在这里插入图片描述

class CountIntervals {
    TreeMap<Integer, Integer> map = new TreeMap<>();
    int cnt = 0;

    public CountIntervals() {

    }

    public void add(int left, int right) {
        Map.Entry<Integer, Integer> interval = map.floorEntry(right);
        while (interval != null && interval.getValue() >= left) {
            int l = interval.getKey(), r = interval.getValue();
            left = Math.min(left, l);
            right = Math.max(right, r);
            cnt -= r - l + 1;
            map.remove(l);
            interval = map.floorEntry(right);
        }
        cnt += right - left + 1;
        map.put(left, right);
    }

    public int count() {
        return cnt;
    }
}

/**
 * Your CountIntervals object will be instantiated and called as such:
 * CountIntervals obj = new CountIntervals();
 * obj.add(left,right);
 * int param_2 = obj.count();
 */

746. 使用最小花费爬楼梯(线性DP)

https://leetcode.cn/problems/min-cost-climbing-stairs/description/?envType=daily-question&envId=2023-12-17

在这里插入图片描述

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        // dp[i]表示在第i层再走一步的最小花费
        int[] dp = new int[n];
        dp[0] = cost[0];
        dp[1] = cost[1];
        for (int i = 2; i < n; ++i) {
            dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
        }
        return Math.min(dp[n - 1], dp[n - 2]);
    }
}

文章来源:https://blog.csdn.net/qq_43406895/article/details/134921535
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。